Researchers examine disease in mountain lions

A Colorado State University research team is examining how illnesses are transmitted in mountain lion populations in an effort to manage future outbreaks of diseases, such as feline leukemia virus, that could threaten the species.

Susan VandeWoude, a research veterinarian and associate dean for research in the CSU College of Veterinary Medicine and Biomedical Sciences, is leading a team that recently received $2 million from the National Science Foundation for a five-year study of the big cats.

The project is expected to shed light on the complex outcomes of human impact – both wildlife-management practices and land development – for a particularly sensitive species of wild cats in the United States. These interwoven consequences, which the scientists have identified through earlier research, include changes in puma populations, population movement and disease dynamics that could have implications for pumas and other cat species, including housecats.

Disease paths

The new research is designed to further understand how people affect puma movements in the wild and the way that disease travels through populations, providing insight about wildlife management used from Florida to California.

For example, when an endangered subspecies called the Florida panther was nearing extinction in the Everglades in the mid-1990s, wildlife managers imported Texas cougars to breed with their cousins. Managers hoped to rebuild the population. For the most part, it worked: Officials estimated last year that this cat population is about five times larger than it was two decades ago.

Other states have used different tactics to deal with the species referred to interchangeably as pumas, cougars or mountain lions. California has banned the hunting of pumas for decades. Hunters on Colorado’s Western Slope are asked to avoid killing female lions in places with low population.

Multidisciplinary effort

Joining VandeWoude in the interdisciplinary research at CSU are Kevin Crooks, a professor in the Warner College of Natural Resources, and Chris Funk, an associate professor in the College of Natural Sciences.

Each researcher brings distinctive expertise to the project: VandeWoude is an authority on feline diseases; her discoveries include uncovering a new family of feline herpesviruses that infects housecats, pumas and bobcats. Crooks, a wildlife ecologist, specializes in the effects of manmade disturbances on the natural world, so he is focusing on how puma habitat and travel corridors have been affected by urban and housing development.

“Large carnivores like pumas tend to be especially sensitive to human impacts,” Crooks said. “They’re often the first to feel the effects, like a canary in the coal mine.”

Funk will use cutting-edge techniques to compare the genetics of various puma populations so that scientists may assess the degree to which they have interbred – providing evidence about their travel patterns.

“It’s hard to track how they move, so we use genetics to infer where they’ve gone,” Funk said. “If you have two groups with similar genes, you can infer that they have interacted.”

Other researchers

Two faculty members from other institutions, Meggan Craft of the University of Minnesota and Scott Carver of the University of Tasmania, will perform the mathematical and statistical analyses needed to create models of how disease is expected to spread geographically through puma populations.

Other collaborators include Dr. Holly Ernest and colleagues from University of California, Davis, and a large number of wildlife managers, field biologists and veterinarians working for state and federal agencies.

The team will examine how wildlife management approaches influence disease transmission. In the case of the Florida panther, for instance, did the imported Texas cougars bring pathogens with them that affected the panthers?

“We’re studying the effects of that intervention, and the intersection of that with landscape dynamics,” VandeWoude said, citing rivers, highways and cities as possible barriers to puma movement and factors in disease transmission.

She explained that researchers can track the speed and direction of virus movement by testing various puma populations and comparing results. For example, the team will try to predict what pathways diseases like the feline leukemia virus will take when spreading through a population, and which groups of pumas are particularly susceptible to outbreaks. The models the team generates will also inform predictions about how disease could spread to pets and humans.

Video game on tap

As an outreach project, one of Crooks’ former postdoctoral students will create a video game that simulates disease movements and lets players manipulate puma populations to help them avoid infection.

The new study is a continuation of a project that VandeWoude and Crooks recently completed on disease transfer within three cat species, in which they compiled a database of puma blood samples and pathogens.

“We now have data on a high percentage of the puma population in our study areas, partly because they are so limited in number,” VandeWoude said.

Read More

The Earth Sciences need women!

In the United States, men outnumber women in many science and engineering fields by nearly 3 to 1. In fields like physics or the geosciences, the gender gap can be even wider. Emily Fischer, professor of atmospheric science at Colorado State University, is the lead investigator on a $1.7 million National Science Foundation grant to close that gap in the geosciences, which encompass mining and geology, atmospheric sciences, issues related to natural resource management, natural disaster forecasting, and oceanography. Developing a program Fischer and her team intend to bolster the number of female undergraduate students earning degrees in the geosciences or going on to graduate school in these fields. They are developing a program to be piloted on the Colorado Front Range and in the Carolinas. Team members include: Silvia Sara Canetto, CSU psychology professor; Paul R. Hernandez, professor of educational psychology at West Virginia University; Laura Sample McMeeking, associate director of CSU’s STEM Center; Rebecca Barnes, professor of environmental sciences at Colorado College; Sandra Clinton, professor of geography and earth sciences at the University of North Carolina-Charlotte, and Manda Adams, a professor associated with the University of North Carolina-Charlotte who is currently on an appointment at NSF (working with the geoscience project team as part of her independent research and development program). Emily Fischer “We want to build the pipeline of female students entering the geosciences,” Fischer said. “Females are underrepresented in the geosciences – at about 16 percent of the workforce. That is the picture in my field too - women represent about 15 percent of atmospheric scientists. It’s even lower when you get into geology.” 2015 and beyond Starting in 2015, the team will recruit 50 first-year female students from CSU, the University of Colorado-Boulder, and the University of Wyoming to attend a workshop where they will learn about educational and career opportunities and meet peers with similar interests. The team will simultaneously recruit a cohort of students from the University of North Carolina Charlotte, Duke University, and the University of South Carolina. From there, the students will be mentored in person by local members of the Earth Science Women’s Network, a nonprofit organization. In addition, female students will have access to a web platform that will enable national-scale peer mentoring. “We are patterning this intervention after outreach programs that we know have been successful with advanced undergraduate and graduate-level women,” Fischer said. “We want to see if this can work with female undergraduate students and get more of them interested in pursuing careers in the geosciences.” Canetto, Hernandez, and Sample McMeeking also will evaluate the program’s effectiveness. The goal is to design an effective, inexpensive recruitment and retention program that can be a model for other universities. “There is evidence that mentoring seems to be an effective tool for women in various disciplines, but there is no scientific data for women in the geosciences,” Fischer said. “We want to collect real data from these students. We want to understand whether mentoring works for undergraduate women in the geosciences and exactly how beneficial these efforts could be.”

Read More

Gamers know grammar, and aren't afraid to use it

Gamers use good grammar? Surprising as it might sound, that's one the findings from studies of online gaming chat led by a CSU researcher.

The studies found that millennials – notorious for misused language and sloppy typing – are actually more accomplished communicators than many of us believed.

“Online chat – especially in games – is often thought of as eroding the typing and self-expression skills of younger people, but our study shows that they are very expressive and do pay attention to how they communicate both with text and non-verbally with their avatars,” said Rosa Mikeal Martey, the study’s lead author and a professor in Colorado State University’s Department of Journalism and Technical Communication.

Multi-tiered study

The studies, conducted by researchers at CSU, Syracuse University, Concordia University and the University at Albany, analyzed the chat, movement and appearance of 201 participants as they played a custom-built quest game in Second Life — a 3D virtual world where users can design their own environments and avatars. A follow-up study compared these findings to 375 players of the multiplayer online game World of Warcraft. The studies set out to see if people’s age is revealed in how they communicate and interact.

The study’s Second Life participants ranged in age from 18 to 64 with an average age of 37, and World of Warcraft participants were between 18 and 54 with an average age of 29. Their appearance, movement, chat and mouse clicks were recorded as they played a two-hour quest game designed by the researchers in each world.

Gamers looking for clues

“People often have a sense of how old other people are after spending time with them online, even if they’ve never met offline – they notice things like how polite people are, their language use and how they express themselves,” said Martey, who became an accomplished World of Warcraft player before immersing herself in the gaming study.

“It’s not just what people say, it’s the types of phrases they use and how they visually interact in virtual space that serve as cues about people’s age online,” says study co-author Jennifer Stromer-Galley, a professor at the School of Information Studies at Syracuse.

Age differences noted

The researchers found that in both Second Life and World of Warcraft, older players were more polite and less emotionally expressive than younger players. In Second Life, older players also used avatars that were more stereotypically attractive than younger players and about half the number of emoticons. In World of Warcraft, younger players jumped about twice as much, moved around 15% more and moved backwards 30% more than older ones.

 “As we found in in our studies of gender, movement reveals a lot about people online – in fact, if you combine gender and age, you see even more clearly that the ones who jump, move backward, and wander around more are most likely to be men under 30,” Martey explained. “Younger players are taking full advantage of the expressive possibilities of the avatar, not just chat – they use that digital self to express themselves just as much if not more than they use words.”

Authors of the study include: Rosa Mikeal Martey, Colorado State University; Jennifer Stromer-Galley, Syracuse University; Mia Consalvo, Concordia University; Jingsi Wu, Hofstra University; Jaime Banks, University of Toronto; Mississauga Tomek Strzalkowski, University at Albany.

Read More